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A method for determining weights and points for the numerical calculation of the matrix
elements of a hermitian operator is proposed. For local non-negative operators, this method
reduces to the Gauss’ method of quadrature, while it is completely novel for non-local
operators. Analogously with Gauss’ method of quadrature, the best n points are the zero of
the polynomial of degree n belonging to the sequence of polynomials which are orthogonal
with respect to the given operator. The method for obtaining the weights, which are
n(n+ 1)/2, is indicated, and it is proved that (n+ 1)(n+ 2)/2 — 1 distinct matrix elements are
exactly reproduced using the above determined weights and points. Some sufficient conditions
in order that the zeros of the polynomial are internal to the interval of integration are
examined. As a practical example the evaluation of exchange integrals generated by an atomic
inner shell is given. i1 1985 Academic Press, Inc.

In many problems of quantum mechanics one must evaluate integrals such as
{.fiafs dr, where « is a hermitian operator in the space LX(C)={g:C—C:
|. gugdr < oo}, C= R” [1]. 1f the functions are subjected to special conditions, it is
possible to modify the operator, without its physical meaning being substantially
changed, in such a way that these restrictions are no longer demanded. For exam-
ple, if the integral were fﬁm af5(x) dx and the functions f|, /5 had to vanish at
the endpoints, by taking the operator o' =(x—a)(b—x) a(x—a)(b—x) such a
restriction is unnecessary. Similarly, for an infinite interval, it can be useful to
modify the operator by taking ' =e “xe %, or o’ =¢ “oe ', depending on the
extremes of integration. In the same manner, one can change « so that the set of all
polynomials is contained in L2(C).

Therefore, we shall examine the numerical integration of integrals of the kind

b
flalgy = TO) ag(x) dx
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with functions f and g having the form Y™ . a,x* (the restriction to a single
variable is only for brevity). The question is analogous to that of the numerical
integration using Gauss’ method, and it consists in determining a set of values of
X, Xg, X1, X,_ 1, belonging to the interval [a, b], and a set of numerical constants
H; (0<i j<n—1) so that the sum 3, H; f(x;) g(x;) is equal to {f|a|g) for
polynomials having the highest degree. The utility of the technique proposed is sub-
stantially for non-local operators, for which it is completely novel, while, for local
non-negative operators it leads to standard Gaussian quadrature [2].

Starting from the knowledge of the values /., = {x"| « |x*)> and assuming that the
determinant

IOO 101 IOnfl

1 I I, _

D(,,)= 10 :11 Ln—1
In—l,o In~l,1 S (AR

is not zero for all n, it is possible to find polynomials Py, P,,..., P,.., of degree
0, 1,..., i,..., orthogonal with respect to a, i.e., which satisfy the relation {P,| « |P;> =
0,;,(P;| a|P;>. As an example, one can follow the Gram-Schmidt orthogonalization
method. We denote with 1 the matrix (oo x o) having entries /,,, and with J the
diagonal matrix with entries J;= (P, a |P;>; then one has: J=LI'L, where L is
the triangular (inferior) matrix composed by the coefficients of the P;.

If f and g are polynomials of degree p and g respectively, one can write f(x)=
2o fiPi(x), g(x)=229_, g;P(x), where f,, g;are univocally determined constants.
Putting f="(fo, f1,r f55 0,.), 8="(&0> &1» &4 0,...), as the vectors of the com-
ponents of f and g with respect to P(x)="(Py(x), P (x),..) [=%x'L, with
x = (1, x, x%,...)] the precedent equalities can be written in matrix form as

With these notations, one has:

fbf_(ﬂ ag(x)dx="T Ub P(x) «'P(x) de g=Tlg[=fLI'Lg] (1)
Analogously, one can write:
n—1 — n—1
Z Hijf(xi) g(xj) = Z t?P(xi) HijIP(xj) g
Lj=0 iLj=0
= TPH'Pg[ = TLXH'X'Lg], (2)

where P =P(x,,..,x, ;) is the matrix (co xn) with entries P, =P, (x,) [and
X,»=(x,)*] and H is the matrix nx n of the H,.
In order that (2) gives the best approximation of (1) for every choice of f and g,
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one must find the points x,,..., x,,_, € [a, b] so that the matrices J and PH'P have

the greatest number of elements equal. It is very easy to show that the

approximation (2) of (1) is exact for all polynomials f and g of degrees p and ¢

respectively, if and only if the minors (p+ 1) x (g + 1) given by the first (p + 1)-

rows and the first (¢ + 1)-columns of the above-mentioned matrices are equal.
Note that the minor of order # of PP

Po(xo) Py(xy) Po(x, 1)
— P(x,) Pi(xy) Py(x,_)
P(n) :
Pn‘l(xo) inl(xl) Pn—l(-xn\l)
does not vanish if we take xg,..., x,,_, different among them; thus it is possible to

determine M so that J, PH'P have the corresponding minors of order n J,
P.,H'P, equal by setting

H=Po P (=X ™5 1 (3)

In that case H is a hermitian matrix. From what we have said before, the
approximation (2) of (1) is exact at least for all polynomials f and g of degree up
to n— 1. By examining the equality

J=PHP  [l=XHX] (*)

as a system in the unknowns x,,..., x,_,, H; (which are n? + n) it is reasonable to
require that besides the equations concerning the mentioned minor of order n, other
n equations (and their symmetrics) are solvable by a suitable choice of the x,.
However, one must bear in mind that it is always necessary that x,,.., x,_, be
located in the interval [a, b]. For example, let us suppose that the two matrices in
(*) have, besides J,,, the elements J, o, J,, 105 J2,_ 10 (and their symmetrics)
equal; moreover, let us suppose that « is such that the function a(1)(x)>0in [a, b]
(x(1) is not identically zero if D, #0). Then consider the product (f; g)o=
foa(1)(x) ) f(x) g(x) dx, and let py,, Pos. - Pon»>-» be orthogonal polynomials (of
degree O, 1,.., n,...) with respect to this product. It is known [2, 3] that the zeros
Eoos 601, . EQ,L 1 of pg, are contained in _in (a,b) and are distinct, and that
§4 a( x)dx={fla|1) =374 ho f(Ey), with suitable weights kg, for
polynomlals f having degree <2n— 1. Hence, by chosing x,= &y0,...,
we obtain the desired equalities.

Analogously, if a(P;)20 [«(x’)>0] in [a, b], and if we take x,= Ciorrs X1 =
Eim—t [Xo=Mj0sms X, _1=M,,_,] as the zeros of the nth orthogonal polynomial
Pinl pj,] with respect to the product (f, g);= [ a(P;)(x) f f(x) g(x)dx, [(f, g)i=
fb (x)(x) f(x) g(x) dx], the matrices in (* ) will have the elements J, ..., J,, . ;
(1, ;s 15,1 ;] equal. (However, this last condition is less significant than the
preceding one, because it depends on the polynomials that are considered.)

The most reasonable requirements are that the matrices have, besides Jiy [Ty 1s

Xp—1= 501141
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the elements J, ..., J,,,_ [1,¢s 1,,—,] (and their symmetrics) equal. This is
satisfied, as it is easily verified, by taking x,,..., x, _; as the zeros of P,, when these
are contained in [a, b]. Moreover in this manner the matrices will have the entire
(n+1)th row and column equal, except J, [/, ]. With this choice the
approximation (2) of (1) is exact for polynomials f, g of highest degree »+ 1, n (or
n, n + 1), respectively.

One condition which guarantees that, for each n, P, has all its zeros in (a, b), is
that, setting a(P(x)) = ‘(aPy, aPy,...) [a(x)="(a(1), 2(x),...)], the following equality
is verified

a(P(x)) = w(x) DP(x) [a(x)=w(x) L 'DLx = w(x) Tx], (4)

where w(x) is a function >0 in (@, b) and D is a diagonal matrix [while T is a
triangular matrix ]. In fact, setting /- g = [% w(x) f(x) g(x) dx, one has

J=<P(x) |a| P(x)) = {P(x) | o(x) P(x)' D)
=P(x)-P(x) D=AD[I=0"T], (5)

where A is given by A= |4 w(x) P(x) P/(x)dx [I';= [’ o(x) x"*/ dx]. Since D and
J are diagonal matrices, so is A, that is the P;s are orthogonal with respects to the
product /- g; hence they have simple zeros contained in (q, b).

If the operator o is real, and the interval is all R, (4) can be modified by an
analogue relation, in which D is the inverse of a tridiagonal symmetric matrix. In
fact, in that case, each polynomial p(x) of degree r is expressed as

with suitable constants c;. If x, was a complex zero of P, (which we can choose to
have real coefficients) and if P,(x)=7,(x —xo)(x —xoHx—x,) " (x~x,_,) then
one would have

b b n-—1
[" ox) alx = xo)(x = Fody =220+ (x—x,_ P dx=[ P, T caP,dx
a “« j=0

n—1

b
=Y ] Pardc=o,
j=0  a

because of the orthogonality of P,, P, when j<n—1; hence (x — x,)(x — X,) would
have to vanish for real x, which is absurd. Therefore all of the zeros of P, are real.
The technique that we have exposed above has turned out to be very useful for
some problems of chemical physics connected with non-local operators. As an
example we propose there the numerical evaluation of exchange integrals.
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The exchange operator of the inner shell of a given heavy atom can be written as

K:Z K, (n=1,2,.)

Z Z Ko

[=0 m= —1}

Ko@) =Wain(r) [ Wnlr) 9r)(rs = 1i]) " dir

(2C)2n+ 1
(2n)!

1/2
w,,,mu—[ ] e Y (0, @) = Ro(r) Y (s ).

In (6) we suppose that each inner shell can be represented by only one Slater
function, and we derive formulas for such a case, but the generalisation to two or
more Slater functions, or different radial parts for different /, is straightforward.
Let us assume that we have two functions @,(r— R,) and ®,(r — R,); we can
expand them in spherical harmonics, with the same centre as K, and write

®\(r—R,)= ﬁ RGN

=
I M8

(7)
Z r”Y s W)

Py(r—R,)=
p

i 18

0q

Using the expansion [4] of (|r,—r,|) "' from (6) and (7), and after the angular
integration we obtain [5]:

[ @K@ dt=3 [ 0 (ri) Ryr) 137 dry [ ffr) Rr2) 13509, m) dry (8)

P4

with

o E L Qe+ DRI+
Paplri72) = Z 5 Cp+ 12+ 1)

CX(p, 1 i,0,0,0). 9
RN L R TR TE (p, L ) )

The different contributions to the integral (8) are thus characterized by different
expressions for 7, ,. Let us consider a term of (8), putting

(ppq(r) = Z asrX
r)=Y B

Any of the integrals inside the summation (8), i.c.,

Ipqu (ppq(rl) Rn(rl)qu(rZ) Rn(rZ) y}zp(rl? rz)r:])‘+pr%+pdrl drz
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then becomes

Ipq =Z asﬁtht(ns P),

st

where
Qulrn, p)= | Ry(rs) Rylra) vaplrira) ri 7215 7+ 2 dr, i

=f e T pytstoripptrritly (pip2)dp, dp,,

where {r,=p, and {r,= p,.
If we now set

Ipq :Z Hi/'fpf/(ri) (ppq(ri)

iy

we obtain, from (10), (11), (12), and (13),

z Z%f_: l:qst(n’ P)*-Z h,/V‘,‘vl':l =0’

st i

TABLE 1
Points and Weights for Integrals of the Type (s| K, |s)

(11)

(13)

(14)

N,=1 P =25 Hy, =125

P, =1.45080666151
P,=454919333846

H, =0.592342882607
H,, =0.234375000001
H,,=0.188907117389

N,=3 P, = 1.06710649908 H,, =0.240656423163
P, = 293658305757 Hy, =0.213009553935

P, = 649631044424 H,, = 0025990411916

H,, = 0400383162779

H,, = 0058354143652

H,, =0.014252195055

N,=4 P, = 085142460521 H,, =0.118885638116

P,=1226616210162
P, =4.46282779200
P, =8.41958553569

H,, =0.143666899247
H,, =0.049888875751
H,, =0.003635803326
H,, = 0.347113462687
Ha; =0.134206486184
H,, =0.009212922182
H ;= 0.088296738661
Ho, = 0.008641307252
H 4y =0.000799572045
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with
H['=22n+1 hij >
i (2}’!)' C2p+2
Vi
r,=—.
¢

Points v; and weights 4, independent of a, and f, are obtained in the way described
in the first part of this paper.

By the method explained above we have calculated the points v, - - v, and the
weights &, for the operators &, (n=1,.., 4) and for N (number of points) from 1 to
4. These points and weights are reported in Tables 1-VIII.

When the angular part of the functions f and ¢ is not explicitly given, one must
calculate these functions at a certain number of points on a given sphere. If we take
the six points P; on the 3-coordinate axis, then the expression ﬁ/3 Yo flpy)
gives the spherical contribution correctly up to /=4, while the total p-type con-
tribution, correct up to /=3, can be obtained by using (1/r;) ﬁﬁ(f(Pl) -
f(P2)+ f(Py)— f(P4)+ f(Ps)— f(Pg)). Our experience shows that these expressions
are quite simple and accurate.

TABLE 11
Points and Weights for Integrals of the Type {s| K, |s>

N, =1 P =35

N,y=2 P, =2.20417150038
P,=5.79582849959

N,=3 P, =1.70686399052
P,=13.94935189695
P,=7.84378411129

N,=4 P, =1.39130720352
P,=3.14594635457
P, =5.60983247045
P,=9.85291398871

Hy, =10

H,, = 4.49289030971
H,, = 189922480622
H,, = 170866007786

H,, = 1.74517772185
H,>= 161463423957
H s = 022026264522
Ha, = 3.36457403385
H,; =0.53307388845
Hy =0.15430669784

H,, = 0.78246320695
H1, = 1.03024089486
H,; = 038244357032
H 4 =0.03256526658
Hy, = 283721017743
H; = 1.14478563167
H,, = 008703518627
Hyy = 0.86867423187
H,, =0.07363607402
H,, = 001023913636
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TABLE 1II

Points and Weights for Integrals of the Type {s| K; |s)

P =45

P, = 2.98442150646
P, =7.01557849355

P, =2.38571000425
P, =495699822302
P, =9.15729176967

P, =1.97795750421
P, = 403642409320
P, =6.73669720718
P, = 112489211851

H,, =137875

H,, = 59.5236549842
H,, = 26.5150147847
H,, = 25.3213154466

H,, = 22.3214011507
H,, = 21.5080609440
H,, = 321398391467
H,, = 475169515496
H,, = 8.00902285976
Ha, =2.57451186326

H,, =9.33618260333
H,, = 13.1560654650
H,, = 5.18234923422
H,, = 0.49577053909
H,, = 39.1551932788
Hay = 163711122141
H.,, = 1.35853988964
Hay = 13.5964690681
H,, = 123372115161
Ho, = 0.19203806328

TABLE IV

Points and Weights for Integrals of the Type {s| K, [s)

N,=1
N,=2
N,=3
N,=4
N,=1

N,=2
Ny=3

N,=4

P =55

P, =3.78475185035
P,=8.21524814976

P, =3.09320767247
P,=15.96215731522
P, =10.4446350130

P =2.59933420998
P,=4.93508289110
P, =7.85018745280
P, =12.6153954062

H,, =3010.5

H,, = 1259.95362836
H,, = 585.043862312
H,, = 580.458647015

H,, = 459.363306668
H,, = 458023820293
H, = 73.5849154651
H,, = 1051.63493794
Hay = 186.002715769
H,,y = 642788523281

H,, = 182.109127408
H,,= 270878301366
H,, = 112058746459
H, = 117073912375
H.,, = 8503231501 11
H,, = 366.126554626
Ha, = 32.6598090752
H,, = 323947323613
H,, = 310141030701
H., = 5.23058720783
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TABLE V
Points and Weights for Integrals of the Type {p| K, |p>

P, =35

P, =2.33095407918
P, =5.66904592073

P, = 1.80190654436
P, = 398977659082
P, =7.70831686636

P, =1.48118475461
P,=3.18304866743
Py=5.63524421477
P, =9.70052229473

H, =175

H,, =0.890330929842
H,,=0.246794871798
H,, = 0.366079326560

H,, = 0386113160475
H,, =0.221091970685
H,, = 0015314691567
H.,, = 0.686909691489
H,, = 0.083703882550
Hy, = 0036756050435

H,, =0.180336107386
H,, = 0.149464453892
H,, = 0.030480366294
H,, = 0002018787696
H,, =0.616150942836
H,, =0.179178816543
Ha, = 0008560466225
H 1, = 0.185646649000
Ha =0.012928574601
H . = 0.002603370244

TABLE VI

Points and Weights for Integrals of the Type (p| K, |p>

N,=1
N,=2
N,=3
N,=4
Ny=1
N,=2
N,=3
N,=4

P =45

P, =295833181119
P, =7.04166818887

P, =12.34459171512
P, =4.94304090496
P,=9.21236738202

P, =1.94857369502
P,=4.01024967129
P;=6.73880190174
P,=11.3023748753

H, =349.15

H,, = 147.454247660
H,, = 69.8737816920
H,, = 61.9481889556

H,, = 524057946143
H,, = 564795525848
H,; = 8.62607881591
Ho, = 119.195327098
Hyy = 206748171066
Hay, = 598798127323

H,\, = 21.8022509632
H,, = 33.7180302590
H,, = 141937335998
H,, = 132104042221
H,, = 955691236084
Ha, = 43.0705834765
Hau = 3.67535281145
Ha; = 332006789883
Ha, = 309022329819
H oy = 0.44001869920
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TABLE VII

Points and Weights for Integrals of the Type {p| K5 |p>

P, =55

P, =3.76781902785
P, =2823218097208

P, =3.06073231235
P,=1595211688356
P;=104871508025

P, =2.57437967603
P,=491029198107
P, =7.85502851969
P, =12.6602998117

H, = 842245714286

H,, = 3478.84375803
H, = 1675.68390602
H,, = 1592.24557278

H,, = 122025198262
H,, = 1310.38215957
H,y = 210.116790797
H,, = 2935.83210755
H,, = 527.752340554
Ha, = 169. 870470886

H,, = 479.403020526
H,, = 759.884073918
H ;= 325525931763
H,, = 328530793161
H,, = 2329.76035654
Hoy = 1057.14138339
Ha, = 94.5148357954
Hay = 887.672781772
H, = 86.0871710229
H,, = 13.6080333927

TABLE VIII

Points and Weights for Integrals of the Type {p| K, |p>

Ny=1
N,=2
N,=3
N,=4
Np=1
N,=2
N,=3
N,=4

P =65

P, =4.58842573343
P, =9.41157426668

P, =3.79681850907
P,=6.95847649921
P, =11.7447049656

P, = 322670816096
P, = 581876229681
P, = 895954737781
P, = 13.9949830515

H,, = 277369.928571

H,, = 112217.444670
H,, = 55221.5510015
H,, = 54709.3818987

H,, = 38851.3668961
H\, = 42022.0432165
H,;=T7102.86321170
H,, = 97672.3207730
H,, = 18153.9325877
Ha, = 6288.56287268

H,, = 14618.0234416
H,, = 237958795773
H,, = 10469.9870176
H,,=1137.05835081
H,, = 76684.1141546
H; = 35185.8351013
Hay = 3312.67553856
Hy = 31396.3331735
Hay,=3164.27196324
H 3 = 540042726520
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TABLE IX

Values of Some Typical Integrals

NP

1 2 3 4 Exact
{s(zo)l Ki(zo)] 1s(z4)) 3.007 4372 4.358 4.367 4.366
{s(za)l Ki(zy) 11s(z4) ) 0.3345 0.3471 0.3468 0.3468 0.3468
(2s(z3)] Ky{z,) |25(z4)) 0.1865 0.1413 0.1446 0.1442 0.1442
(3s(z3)] Ki(zy) 13s(z5)> 0.00971 0.00982 0.00969 0.00976 0.00975
{3s(z3)| Ky(z,) |35(25)> 0.9073 0.5781 0.6104 0.6081 0.6099
4s(z4)l Kx(z,) 145(z4) > 0.00374 0.00498 0.00468 0.00474 0.00473
{4s(z4)| Ks(z4) |4s(z4) > 0.2243 0.1432 0.1553 0.1559 0.1557
{5s(z5)| Ko(z,) |5s(zs5)> 0.0721 0.0502 0.0533 0.0538 0.0537
Q2p(z3)] Ki(zy) 12p(z4) ) 0.0253 0.0305 0.0306 0.0306 0.0306
(3p(zs)| Ky(z5) 13p(z5)) 0.00394 0.00335 0.00338 0.00337 0.00337
{3p(z4)| Kxlz2) 13p(24)) 0.1394 0.1187 0.1188 0.1181 0.1182
{4p(z4)| K5(z3) 14p(z4)> 0.5555 0.4609 0.4561 0.4529 0.4536
{Splzs)| Ks(z3) 15p(z5) ) 0.00143 0.00139 0.00138 0.00139 0.00139
{5p(zs)| Ka(za) |5p(zs)) 0.2201 0.1531 0.1588 0.1588 0.1589
{3p(ze)| Kalzs) 15p(26) > 0.00277 0.00245 0.00247 0.00248 0.00248

Note. N, =number of radial points for the numerical integration; values of the orbital exponents:
z;=16,2,=7, z23=4, 2,=2, zs=1, z,=0.5.

In Table IX we report the approximate and the exact values of some typical
integrals. These points and weights have been applied to the calculation of the
matrix elements of the exchange integral K generated by the orbitals representing
the inner shells of heavy atoms [6]. This approximate calculation constitutes a
remarkable simplification in the calculations of electronic structure of molecules or
complexes involving pseudopotentials [7].
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